Transfer Learning-Based Dynamic Multiobjective Optimization Algorithms
نویسندگان
چکیده
منابع مشابه
Transfer Learning based Dynamic Multiobjective Optimization Algorithms
One of the major distinguishing features of the dynamic multiobjective optimization problems (DMOPs) is the optimization objectives will change over time, thus tracking the varying Pareto-optimal front becomes a challenge. One of the promising solutions is reusing the “experiences” to construct a prediction model via statistical machine learning approaches. However most of the existing methods ...
متن کاملLearning in Multiobjective Optimization
Our vision is for a seminar that encourages the free exchange of ideas around the organizing subject of learning in MCDM and multiobjective optimization. The following programme provides a skeleton of activities we propose. Participants should suggest amendments to this programme as the week progresses. We encourage the spontaneous formation of working and discussion groups among the participan...
متن کاملMultiobjective optimization using evolutionary algorithms
Evolutionary algorithms (EAs) such as evolution strategies and genetic algorithms have become the method of choice for optimization problems that are too complex to be solved using deterministic techniques such as linear programming or gradient (Jacobian) methods. The large number of applications (Beasley (1997)) and the continuously growing interest in this field are due to several advantages ...
متن کاملEvolutionary Algorithms for Multiobjective Optimization
Multiple, often conflicting objectives arise naturally in most real-world optimization scenarios. As evolutionary algorithms possess several characteristics due to which they are well suited to this type of problem, evolution-based methods have been used for multiobjective optimization for more than a decade. Meanwhile evolutionary multiobjective optimization has become established as a separat...
متن کاملSTATIC AND DYNAMIC OPPOSITION-BASED LEARNING FOR COLLIDING BODIES OPTIMIZATION
Opposition-based learning was first introduced as a solution for machine learning; however, it is being extended to other artificial intelligence and soft computing fields including meta-heuristic optimization. It not only utilizes an estimate of a solution but also enters its counter-part information into the search process. The present work applies such an approach to Colliding Bodies Optimiz...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Evolutionary Computation
سال: 2018
ISSN: 1089-778X,1089-778X,1941-0026
DOI: 10.1109/tevc.2017.2771451